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Abstract

An approximate analytical solution describing the shoaling of

modulated wave-trains is presented. This solution provides

new information about the wave field evolution as well as

.4'-'2 about the wave-induced mean current and set down.
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IN. NTRODUCTION

The shoaling of weakly nonlinear surface wave groups is important

.

to the understanding of coastal wave climate and coastal flow regime.

In the past, most efforts concentrated on the equally important

though simpler problem of shoaling of wave-trains (i.e. monochromatic

wave groups), for details see Stiassnie & Peregrine (1980).

The first mathematical formulation for shoaling of wave-groups

was given by Djordjevic' and Redekopp (1978), and in a somewhat improved

version by Stiassnie (1983). This formulation is limited to cases

where the water depth is small compared to the group-length. Equations

suitable for water depths of the order of the group-length are

deduced in Peregrine (1983); combining the constant depth model by

Davey and Stewartson (1974) and the higher-order model for infinitely

deep water by Dysthe (1979).

The only available solutions are those for the shoaling of isolated

wave-packets (solitons), which were originally given by Djordjevic'

and Redekopp in their 1978 paper. They predict that a soliton
.1'.

envelope can undergo fission only if it propagates into deeper water.

By heuristic assumptions for the evolution along the slope, they also

estimate the number of solitons emitted after a single soliton descends

from a shallower shelf. A more recent study, Turpin, Benmoussa and Mei

(1983) confirms these results qualitatively, but not quantitatively.

V--
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To the best of our knowledge, no results for shoaling of wave-

groups (i.e. modulated wave-trains) have been presented so far. These

modulated wave-trains are of particular importance since almost every

wave-train will eventually become modulated due to its intrinsic

Benjamin-Feir instability. The aim of the present paper is to throw

some light on the evolution during the shoaling of a modulated

wave-train and its influences on the mean free surface and the wave-
,.

induced mean flow.

Sections 2, 3 and 4 outline the derivation of the mathematical

model and its simplifications to a level which enables an analytical

solution. The model presented at the end of section 2 is rather

general; it consists of a coupled system of equations for the

complex wave envelope and the induced mean flow potential. In section

3 we add the assumption of periodicity of the modulation, which leads to

decoupling of the system of equations. The result is a nonlinear

Schr8dinger equation with a variable (depth dependent) coefficient,

which can be solved by reasonable numerical efforts. In section 4

we adopt the assumption of three-waves systems, which has been used

for constant depth in Stiassnie and Kroszynski (1982), and which

together with a W.K.B. type approach enable an analytic, though

"- asymptotic solution. This asymptotic solution is compared with

numerical results in section 5. Sections 6, 7 and 8 include a

detailed presentation and discussion of the physical results obtained

from out calculations.

.p *4
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2. EVOLUTION EQUATIONS

Assuming irrotational motion, there exists a velocity potential

.(x,z,t) which satisfies Laplace's equation:

-xx + ZZ =0, (2,1)

t is time, x is the horizontal coordinate in the direction of wave

propatation, and z is the vertical coordinate pointing upward from

the undisturbed free surface.

The boundary condition on the bottom, z = -h(x), is

z -h'(X). (2.2)

The boundary conditions on the free surface, z = t(x,t), are the

kinematic condition:

z = + x x (2.3)

z t x. x

and the dynamic condition:

, 2 2
2gC + 2t + + 0z 0. (2.4)

Considering situations for which the depth h(x) as well as

the wave input vary slowly, we assume all wave-field properties

to be slowly changing. To render the term 'slowly' explicit we

introduce a small nondimensional parameter c which is a measure of

the wavy surface slope, and define the following new variables:
VX

T C(df ix t), (2.5a)

C :2 X; (2o5b)

S..
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V i

where a' = WafK is the group velocity. a2 - gKth(Kh) is the linear

dispersion relation, relating the leading order constant frequency .0.

9 to the leading order wave-number K() and the water depth h(Q).

Having the wave-groups (i.e. wave fields with narrow spectra)

in mind the velocity potential * and the free surface displacement .

-: are expanded in Fourier series:

*', (xzt) + {( 1
( r, ' ,z)e + 2(T,,z)e + "'" c.c.1 (2.6a)

2i

ffi (, ) + {C 1 (,E)e + 2 (T,)ei + ... + c.c } (2.6b)

x

where 0 = (f K()dx - at), and c.c. stands for the complex conjugate.

With e chosen to be small, the functions 0j(r,C,z) and j(T,) for

A. 4j 1 1 are expanded formally in power series of e

= mi(TE, z) (2.7a)

M~j

The mean water level 0 and the induced mean flow potential 09

require a special treatment and are best written as:

S (r, ) " 220.(2.7c)o 20'

4 o(X,Z,t) - £O1 O(r,&,z) + C2 , 2 0 ( )-t. (2.7d) 4'.

Note that it turns out that while m and m for 1 tare all of

0..:
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order one, the order of 1i0,;20 and 020 is between one for Kh f 0(l)

and e for Kh The term £2 E 2 0 ( )'t, in Eq. (2.7c), is needed

to suppress terms that grow boundlessly with time at higher order,

as was shown in Stiassnie (1983). Following the method of derivation

used by Djordjevic' and Redekopp (1978) but using Eqs. (2.7c,d),

instead of expanding eo and o in power series of e (which is justified
0

only for Kh 0(1)), we obtain a system of evolution equation (2.9a,b,c,d) U

for *i0 and the complex wave envelope,

A(T, ) = -2ie ll (2.8)

as follows:

£" 281A

-i A + iA +2 A - - JA12 A ( ( +8 )

z=0, (2.9a)

e2
+ d- l i 0 ; -h 4 z 4 0, (2.9b)

ZZ TT

202-e 1z + "2-(JI'l) ; z f 0 (2.9c)

"10 za 0; zf-h. (2.9d)

*. The depth dependent coefficients are:

" 1 . K3  9-12thZ(Kh)+13th4 (Kh)-2th6 (Kh) (210)

= 12 2"' 8h (Kh ))

K2
K82 = • (j + sech(Kh)) (2.10b)

3 K2 (.* 3 - sech2 (Kh) (.lc
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A set of modulation equations equivalent to (2.9), but for constant

K depth, has been recently derived from the finite depth Zakharov equation,

A see Stiassnie and Shemer (1984). The mean water level Co is given by:

=2 K2

g (10 -*20 - 4 sech 2 (Kh)" A I2  (2.11)

and is of order between £2 to , depending on the water depth.

3. PERIODIC CASES

Restricting the discussion to cases for which the complex wave envelope

A(T, ) is periodic in T, and assuming zero averaged (over T) mass

9. flow in the x-direction (as in the case of an impermeable beach) enables

the decoupling of the system (2.9). For these cases A is governed by

the nonlinear Schradinger equation:

i M ' a" C-20i l2cL2 .

2' 3r A + iA + ' Ar T- 1 A 2A - - A, (3.1)

where the bar denoted averaging oVer T, and .,?

I 1 + 2a(1-gh1(n,)2 ) (3.2a)

,',,, o 2  hS- (82+8 3) - 2a(1-gh/(a,)' )  (3.2b)

The induced mean flow potential is given by:

-- 2 - +n (z){b (n)e2Wi * b2 () -2winT/y,}
10 2.Qh -T + Ea n()bnV -b-n aa

(3.30
.4.. 4(3.3)

S-
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where Y is the period of A(T, i;

a cosh(2irn(z+h)f 'y), n = 1,2,... (3.3a)n

2g-2
C(3.3b)

n=.I

' in 242 ng . 21rneh. 2r .2nchx Cn9

'ao 9

"and C are the Fourier coefficients of (JAIZ:

- (IA12- E [C [ Fe2rn CQe-2iT (3.4)

- --- / . The potential 20which is needed to calculate the mean water level

Co' see Eq. (2.11), is given by-

AI0 gKa/2Qh. (3.5)

,20

Bq. (3.1) is identical to Eq. (4.9) in Stiassnie (1983), which has

been derived assuming no vertical dependence of the induced mean flow.
.1

The latter assumption is strictly valid only when Kh = 0(l), namely,

for cases where the water depth h is small compared to the group length

-1
-. (e)-. For these cases the present o and yield Eqs. (3.7)

<'a. and Eq. (3.8) of Stiassnie (1983).

A simpler dimensionless form of Eq. (3.1) is obtained by means of

"". an4. 38 fStasi 18)

the transformations

77-
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1 5 x O2dx-12 ' F A xp i A IZ- - ); (3. 6a) o

= -~/fy; x 2 ()- dE. (3.6b)

which give

'." i~ix +TT+ +  02 =0, (3.7) "ll

-g3.3 Y2

- 'I 5 (3.8)

The dimensionless parameter v is a monotonic increasing function

of Kh, having the values zero and (ly)z for Kh = 1.363 and Kh -

respectively. The statement of the mathematical problem, given by

Eq. (3.7), is completed by the following input condition at X 0

(i.e. x =x : a reference point in infinitely deep water).

ici
(T,O) = 1 + 28e cos(2rT) (3.9)

which corresponds to a system composed of a carrier-wave and a symmetric H

"side-band" disturbance

) = e-it -i [ (1+2wlefy)Qt-+
*.t,xc = Re{e_ "e +

+ Oe-i[ (1-2w/aT) a - }+O(C 2) (3.10)

For constant depth , i - const, it is well-known that Eq. (3.7) with Tin (O,1>,

subject to periodic boundary conditions has the following X invariantsL-40
"- ".a
-- o

.p.'.

a. N

4.-."

a-..
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Jl f I*12dT (3.lla)
0

z= f ( T - )dT (3.11b)

3= f  (1IIf 2 TT[Z)dT (3.lc)
3

These invariants are determined by the inDut condition, Eq. (3.9) so

that

J =1 + z  ; J =0 (3.12a,b)1 2

= + (4-P+2cos2a)-282+ 68 (3.12c)

where

P = 87r 2 il (3.13)

For varying depth, p =(X), Jl and J2 remain invariant and are given

by (3.11a,b) and (3.12a,b), but J is a function of X governed by the

equation,
'U

dJ 3  2UX 1
' f IV 2 dT (3.14)

0

:Z:.

=.
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4. THREE-WAVES SYSTEMS

The solution of Eq. (3.7) can be expanded in a Fourier series

.(TX) Z D (X)e2L nT (4.1)

-S.c

The boundary condition at X = 0, Eq. (3.9), gives D (0) 1;
0

D (0) = DI(0) = 6eia; Dn(0) = D_ (0) = 0 for n > 2.

Stiassnie and Kroszynski (1982) truncated the above given series and

considered only three waves systems:

2rinT
.(T,X) = l Dn(X)e (4.2)

4'S Substituting Eq. (4.2) into Eq. (3.7) yields the following system of

ordinary differential equations:

i-=-+ U[([Do12-41DIZ)Do+2ZD*] =0, (4.3a) "

a..

dD1  ,,i

WAN-D + i(2ID I2 +3ID D 1 'P )D + D2D*] =. (4.3b)

Note that Eq. (3.11b) yields D 1  D1.

For constant depth the system of Eqs. (4.3a,b) has exact solutions

in terms of Jacobian elliptic functions with periods of order 1 in X which

is summarized in the Appendix; for details see Stiassnie and Kroszynski

(1982). These solutions depend on the invariants J1,J3, and on the parameter

, which in turn depends on the water depth h and on the modulation

period y • For very mild depth variations, where h = o(I), we apply

''a
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an asymptotic, WKB related approach, assuming the local solution to be

that of the constant depth type and using Eq. (3.14) to determine J3 "

J and y are fixed by the input conditions and J3 ' is given through

I(P) by:

2 in "7.)

dI /P(4-P) 7P
dP / (7P)2 ,(4.4)din 21 -- (4-P) -

whreI (2P-1)Il

where.-.

I(P) = J(P) - 2 (4.5)

3 J1

The initial value of I, at X = 0, where P = P is denoted by I and
0 0

is given by:

I 0 = 212B2 + 4(1+cos2c)-ZPo] (4.6)
0

10, as well as 1(P) were assumed to be of o(.) throughout the rather

lengthy derivation of Eq. (4.4). In all our examples we-choose(T 2 I )

P 0 2, corresponding to the fastest growth-rate of the Benjamin-Feir0

instability.

lei..



5. NUMERICAL VERIFICATION OF THE A-SY.PTOTIC SOLUTION

4

In order to appraise the relevance of the asymptotic solution given

in the previous section, we compare its results with those of a numerical

a solution of the system of ordinary differential equation (4.3a,b).

Fig. 5.1 shows I=I(P) for four initial values ofl =(2)(1. =-0.04,

-0.01, 0.04, and 0.1). The broken line represents the asymptotic solution

and was obtained by numerical integration of Eq. (4.4). The solid line was'.'4

obtained, by substitution of the results obtained from a numerical

solution of the system of O.D.E (4.3a.b) into the expression

(p) = 21D 2{[D, 1
2 +21Do1 2 -P+21Do12cos[2(arg Dl-arg D)} (5.1)

Fig. 5.1 about here

The numerical solution of the system of O.D.E was obtained using

a trapezoidal method and assumign the P(hC)) = 2+0.2X. Note that the

assumption III <<I, which is necessary for the asymptotic solution to be

valid, imposes a restriction on the range of variation of P (P = 2.8

corresponds to S2 h/g - 4). In Fig. 5.2 we show three parts of the

exterior group envelope I*(0,X)j as well as the interior group envelope

I*( ,X)I for the input conditions m = 0, B - 0.158 (tO - 0.1).

Fig. 5.2 about here

Here again, solid lines represent the numerical solution of Eqs. (4.3a,b)

with P - 2+0.2X while the broken lines correspond to results obtained

by the asymptotic method, utilizing the relation:

% 

,

'a',
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Ii.(TX) [ = -21+2(4J -P)-7z2- + ES(2I+2P _ 2) 1+4zcos2wrT]2 }/8z (5.2)

where z is given in the Appendix.

The three parts shown in Fig. 5.2 are for P=2, 2.44, 2.75 for the

asymptotic solution compared toP in(2,2.03), (2.44, 2.49), (2.75, 381)

for the numerical solution of the O.D.E.,respectively. The agreement

between the two methods of solution, as seen in both the above figures

is rather encouraging and seems to indicate the validity of our new

asymptotic solution of the system (4.3a,b). Nevertheless, one

still has to answer the question if, and to what extent, the syetem

(4.3a,b) itself is a reasonable substitute for the N.L.S, Eq. (3.7)

For constant depth Stiassnie and Kroszynski (198Z) show a good

Ile. quantitative agreement in the length of the modulation-demodulation

V cycle and only a qualitative agreement for the amplitudes. A similar

trend can be seen in Fig. 5.3, which compares two numerical

solutions, one for the N.L.S. (3.7) - dotted line, and the other

for the system of O.D.E. (4.3a,b) - solid line.

Fig. 5.3 about here

The input data in Fig. 5.3 is ai 0, R 0.1 (Io 0.04) and theo

variation P - 2 + 0.2X is assumed; Both the exterior and interior

group envelopes are drawn.

0,.

A 5'A

% 4 ."
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We believe that our much-simplified asymptotic solution is not over-

simplified, and is able to produce quite a few results of qualitative,

and maybe even semi-'uantitative relevance, which enable us some new

physical insight.

6. ON P AND I
0

One fundamental property of the asymptotic solution is that it

de.ends on P and I solely. Given the input data a, (and P =2), I
00 0

is determined by Eq. (4.6). Then, integrating Eq. (4.4) from P to P0

the parameter I(P) is found, and the solution given by Stiassnie

and Kroszynski (1982), is locally applied.

Fig. 6.1 about here

Fig. 6.1 gives the relation between P and nondimensional local

water depth K h, (where K, = nZ/g is the wave-number in infinitely deep
-lI

watet, for y = 2 l. ? is a monotonic decreasing function having the

values infinity at K h = 1.195(Kh=l.363)and 2 for K h The input

value I , (for P =2) dependence on a and S is shown in Fig. 6.2.
00

Note that different combinations of a and S give the same 10, and thus ..

basicly the same solution for any P.

Fig. 6.2 about here
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7. GROUP FNVELOPES

The free-surface of an (unstable) shoaling wave-train, displays

three distinct length scales: X1 - the wave length; X2 - the modulation

or group length; and k3 - the modulation-demodulation, group-envelope,

or maybe best 'supergroup' length. These three lengths are given by

1 = 27r/K, (7.la)

X = 21r- Iw'/a , (7. 1b)

S 2Pj 2P2 (4-P)

In (.c
= ZY/(4-p) I(~4i(.

see Fig. (7.2a).

It can easily be seen that in the range of depths where the

asymptotic solution applies, Kmh > 4, XI and X2 remain almost

constant. On the other hand, X 3 ' which depends on P, exhibits quite

a remarkable variation, as shown in Fig. 7.1.

Fig. 7. 1 about here

In Fig. 7.1 we show the variation of X3 as a function of the depth

K h for four different input data I - -0.04, -0.01, 0.04, 0.1. For
0

I <0, X3 decreases with decreasing depth, but for I > 0 X increases
0 3o0 3

'W with decreasing depth up to a "critical depth" (corresponding to

I - 0) and from there on starts to decrease.
.4....
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Fig. 7.2 shows the group envelopes (dashed line) and wave

envelope (solid lines) at a fixed instant for c = 0.2, at the following

four locations: (a) - infinitely deep water, Po 2, 1-0.1;
0

(b) K1,h = 11.2, P 2.2, I - 0.052; (c) K h = 5.7, P = 2.45, 1 = 0.01;

(d) K h = 4.2, P - 2.75, 1 = -0.028.

Fig. 7.2 about here

In Fig. 7.2a we have added a portion of the wavy-surface (thin solid

line) as well as the lengths XlX2, and X3 " Note that the supergroups

(namely: the exterior and interior group envelopes) are fixed in

space, while the wave envelope moves with group-velocity and the waves

themselves withi the phase velocity. Similar sketches to Fig. 7.2

were obtained for the three other cases given in Fig. 7.1.

In order to complete the picture for shallower water depth we

present in Fig. 7.3 the group envelopes at five locations: P =a:(2,2.05),

b:(2.32, 2.63), c:( 17 .7 , 22.8), d:(-22.4,-17.5), e:(-4.1,-3.9),as

obtained from a numerical solution of the system (4.3a,b) for the

same input data as in Fig. 7.2 assuming 4 - 39.47-10X.

"I Fig. 7.3 about here

The results in Fig. 7.3 indicate that X continues to shorten

and that the intensity of modulation decreases.

-0 -

* 4.-
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8. THE MEA FLOW FIELD 6

We express the mean flow u =a lax = -aaz, v =a/3z=oi3lax
0 0

through the stream function
414= g2Kye- 2-)

4: ~([D1 2+zD 1 j'z +
3 a 2(D*D I+DD*) sh (2 (Z qH ) co s (2rT )

47ffl Z' g y sh(2H)-ch(2H)
2irea~

o-,21/ -)" 82Dj[;h(4(z+Ri))cos(41rT)- ye.

+ h ) h4 + constant (8.1)41OW ---9= sh(4H-2ch(4t

where Z -nrezfa'y , Hi -rchl'y and T -23 2 are dimensionless

quantities. The constant in Eq. (8.1) is chosen so that T = 0

at the bottom. The mean free surface o is given by Eq. (2.11)

Figures 3.1, 8.2, 8.3 about here

.4-

The stream-function '(T,Z) as well as the mean free-surface

for cases a, b and d of Fig. 7.2 are presented in Figures 8.1, 8.2

and 8.3 respectively. These figures demonstrate the rather complicated

structure of the wave induced mean flow field.

Some of the main features are: i) the mean current, which is

shown in part (b) of the figures, as well as the mean free surface,

in part (c) exhibit a somewhat cellular structure influenced by the

wave envelope variations; (ii) a dominant adverse cu rent appears

underneath the high waves and a much weaker, positive current (in the

wave propagation direction) under the low waves, for the shallower cases

the positive currents almost disappears; (iii) the magnitude of the

maximum adverse currents at the free surface is almost the same for
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all three depths (Kwh =ao, 11.2 and 4.2); Civ) one can notice the

tendency of the flow fields to become more uniform in their lower

parts and on the sides of the supergroups (where the modulation

amplitudes get much smaller); (v) there is a set-down in the mean

free surface accompanying the peaks of the wave envelope and a smaller

set-up accompanying their troughs.

-. 7

- -S

.%

.-.-
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APPEN~DIX -Solution of Fqs. (4.3a,b) for constant depth

Input data: J J P. 3 12

1, f(4j 141 i1- (A.1)
~{4J1-) 1(4J (I.D2 -

C P *E'-(' + 2) t (A.2)

c.-max(C1 C) d min(C1,C) (A.3a,b)

a 2P; b -f (4-P) (A.3c,d)

2a-b c-d
a b(A4

r7-7b x(A.5)
'4.

cd(y,k) is a Jacobian elliptic function of the argument y with modulus k.

2
- a-b. (1-cd)(A)

a-b-cdt

IDil = =~-2 VT -i (A.7a,b)1

c.os[2 (arg) -argD 0] (A.7c,d)

2z(JE
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